Search results for "Thioflavin T"

showing 10 items of 23 documents

Protective Effects of L- and D-Carnosine on R-Crystallin Amyloid Fibril Formation: Implications for Cataract Disease

2009

Mildly denaturing conditions induce bovine ?-crystallin, the major structural lens protein, to self-assemble into fibrillar structures in vitro. The natural dipeptide L-carnosine has been shown to have potential protective and therapeutic significance in many diseases. Carnosine derivatives have been proposed as potent agents for ophthalmic therapies of senile cataracts and diabetic ocular complications. Here we report the inhibitory effect induced by the peptide (L- and D-enantiomeric form) on ?-crystallin fibrillation and the almost complete restoration of the chaperone activity lost after denaturant and/or heat stress. Scanning force microscopy (SFM), thioflavin T, and a turbidimetry ass…

CrystallinCircular dichroismAmyloidCarnosinePeptideMicroscopy Atomic ForceBiochemistryCataractLens proteinRats Sprague-Dawleychemistry.chemical_compoundOrgan Culture TechniquesCrystallinChaperone activityAnimalsalpha-CrystallinsSFM Scanning Force Microscopychemistry.chemical_classificationDipeptideCD Circular DichroismThT Thioflavin TCalorimetry Differential ScanningDSC Differential Scanning CalorimetryCircular DichroismCarnosineStereoisomerismIn vitroeye diseasesRatsSpectrometry FluorescencechemistryBiochemistryHEPES 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acidThioflavinCattleFemaleSpectrophotometry Ultravioletsense organsAmyloid fibrilMolecular Chaperones
researchProduct

Phasor FLIM analysis of Thioflavin T fluorescence in protein amyloid aggregates: Mapping molecular interactions.

Thioflavin T (ThT) is a worldwide used dye to monitor protein aggregation as it stains with a certain specificity amyloid structures. The interactions between ThT and its hosts are largely studied suggesting that fluorescence properties of this dye critically depend both on the environment rigidity, electrostatic and hydrophobic properties as well as on molecular details binding site structure. Here FLIM and phasor approach analysis are used to exploit ThT amyloid interactions and, in turn, to address polymorphism and structural heterogeneity of amyloid species mapping aggregate-to-aggregate structural differences and revealing details of molecular architecture within the same aggregate.

FLIMprotein aggregateThioflavin Tphasor amyloidSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct

Designing trehalose-conjugated peptides for the inhibition of Alzheimer’s Aβ oligomerization and neurotoxicity

2008

Neurotoxicity Alzheimer Amyloidsbeta-sheet breaker peptides • amyloid-beta • trehalose • SFM • neuronal cultures • thioflavin T
researchProduct

Carnosine inhibits amyloid fibril formation of alpha crystallin under destabilizing conditions

2008

SFM Scanning Force MicroscopyCD Circular DichroismThT Thioflavin THEPES 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acidDSC Differential Scanning Calorimetry
researchProduct

Phasor-FLIM analysis of Thioflavin T self-quenching in Concanavalin amyloid fibrils

2020

The formation of amyloid structures has traditionally been related to human neurodegenerative pathologies and, in recent years, the interest in these highly stable nanostructures was extended to biomaterial sciences. A common method to monitor amyloid growth is the analysis of Thioflavin T fluorescence. The use of this highly selective dye, diffused worldwide, allows mechanistic studies of supramolecular assemblies also giving back important insight on the structure of these aggregates. Here we present experimental evidence of self-quenching effect of Thioflavin T in presence of amyloid fibrils. A significant reduction of fluorescence lifetime of this dye which is not related to the propert…

Fluorescence-lifetime imaging microscopyAmyloidFLIMHistologyAmyloid02 engineering and technologyProtein aggregationprotein aggregation03 medical and health scienceschemistry.chemical_compound0302 clinical medicineself-quenchingmental disordersamyloid fibrilConcanavalin Afluorescence lifetimeHumansBenzothiazolesInstrumentationFluorescent DyesInclusion BodiesQuenching (fluorescence)biologyStaining and LabelingChemistryOptical ImagingPhasorNeurodegenerative Diseases030206 dentistry021001 nanoscience & nanotechnologyFluorescenceSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Medical Laboratory TechnologyMicroscopy FluorescenceConcanavalin APhasorbiology.proteinBiophysicsThioflavin TThioflavinamyloid fibrils Concanavalin A FLIM fluorescence lifetime Phasor protein aggregation self-quenching Thioflavin TAnatomy0210 nano-technology
researchProduct

Thioflavin T templates amyloid β(1–40) conformation and aggregation pathway

2015

Aβ(1-40) peptide supramolecular assembly and fibril formation processes are widely recognized to have direct implications in the progression of Alzheimer's disease. The molecular basis of this biological process is still unknown and there is a strong need of developing effective strategies to control the occurring events. To this purpose the exploitation of small molecules interacting with Aβ aggregation represents one of the possible routes. Moreover, the use specific labeling has represented so far one of the most common and effective methods to investigate such a process. This possibility in turn rests on the reliability of the probe/labels involved. Here we present evidences of the effe…

Protein StructureSecondaryAβ(1–40) peptideAmyloidProtein ConformationMolecular Sequence DataBiophysicsSupramolecular chemistryMolecular Dynamics SimulationProtein aggregationProtein Aggregation PathologicalBiochemistryProtein Structure SecondarySupramolecular assemblyProtein Aggregateschemistry.chemical_compoundProtein structureAlzheimer DiseasePathologicalSecondary structureAβ(1-40) peptideHumansBenzothiazolesAmino Acid SequenceFluorescent DyesAmyloid beta-PeptidesProtein StabilityOrganic ChemistryAlzheimer's diseaseProtein AggregationSmall moleculePeptide FragmentsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Peptide ConformationAlzheimer's disease; Aβ(1–40) peptide; Protein aggregation; Protein conformation; Secondary structure; Thioflavin T; Alzheimer Disease; Amino Acid Sequence; Amyloid beta-Peptides; Fluorescence Recovery After Photobleaching; Fluorescent Dyes; Humans; Molecular Dynamics Simulation; Molecular Sequence Data; Peptide Fragments; Protein Aggregates; Protein Aggregation Pathological; Protein Conformation; Protein Multimerization; Protein Stability; Protein Structure Secondary; ThiazolesThiazolesBiophysicBiochemistrychemistryThioflavin TBiophysicsThioflavinProtein MultimerizationFluorescence Recovery After PhotobleachingBiophysical Chemistry
researchProduct

Thioflavin T Promotes Aβ(1−40) Amyloid Fibrils Formation

2015

Fibrillogenesis of the small peptide Aβ(1-40) is considered to be the hallmark of Alzheimer's disease. Some evidence indicates small oligomers, rather than mature fibrils, as the key cytotoxic agents. The fluorescent dye Thioflavin T (ThT) is often used to detect amyloid deposits in both in vivo and in vitro experiments, and it is used to study kinetic measurements, under the fundamental hypothesis that this probe does not influence the aggregation processes. We report experimental data showing that ThT may promote the Aβ(1-40) peptide amyloid aggregation changing solvent-peptide interactions and stabilizing more ordered β-like conformation. This finding has a two-fold importance: It is a f…

chemistry.chemical_classificationAbeta(1-40)Amyloidthioflavin TP3 peptideNanotechnologyPeptideFibrillogenesisFibrilIn vitroSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)chemistry.chemical_compoundchemistryIn vivoBiophysicsGeneral Materials ScienceThioflavinfluorescencePhysical and Theoretical Chemistryfibrillation
researchProduct

Inhibition of α-crystallin amyloid fibrils formation by carnosine

2008

SFM Scanning Force MicroscopyCD Circular DichroismThT Thioflavin THEPES 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acidDSC Differential Scanning Calorimetry
researchProduct

Biochar from Wood Chips and Corn Cobs for Adsorption of Thioflavin T and Erythrosine B.

2022

Biochars from wood chips (WC) and corn cobs (CC) were prepared by slow pyrolysis and used for sorption separation of erythrosine B (EB) and thioflavin T (TT) in batch experiments. Biochar-based adsorbents were extensively characterized using FTIR, XRD, SEM-EDX, and XPS techniques. The kinetics studies revealed that adsorption on external surfaces was the rate-limiting step for the removal of TT on both WC and CC biochar, while intraparticle diffusion was the rate-limiting step for the adsorption of EB. Maximal experimental adsorption capacities Qmaxexp of TT reached 182 ± 5 (WC) and 45 ± 2 mg g−1 (CC), and EB 12.7 ± 0.9 (WC) and 1.5 ± 0.4 mg g−1 (CC),…

adsorption kineticthioflavin Tisothermwood chipseryhrosine Bcorn cobbiocharGeneral Materials Sciencewood chips; corn cobs; biochar; thioflavin T; eryhrosine B; adsorption kinetics; isothermMaterials (Basel, Switzerland)
researchProduct

Amyloid Fibrils Formation in Concanavalin A studied by Dynamic Light Scattering and Fluorescence techniques

2007

DLS Thioflavin T Concanavalin A
researchProduct